Il progetto HOLiFOOD

Il progetto HOLIFOOD, finanziato dall'Unione Europea nell'ambito del programma *Horizon Europe* è un progetto quadriennale (2022-2026) che mira a introdurre un approccio olistico per affrontare i rischi dei sistemi alimentari in un contesto globale in continua evoluzione.

Il consorzio riunisce 17 organizzazioni provenienti da 10 paesi europei, la cui competenza multidisciplinare e conoscenza nel settore contribuiscono a fornire i metodi e gli strumenti necessari per supportare i decisori politici e gli attori del settore alimentare nell'adozione di decisioni efficaci.

Le nuove tecnologie di HOLiFOOD al netto dei necessari adattamenti adottati dagli stakeholders, inclusi le autorità nazionali per la sicurezza alimentare, e facilitate dagli sforzi di progettazione congiunta dei valutatori del rischio, produttori e consumatori, nonché da ampie attività di formazione/istruzione.

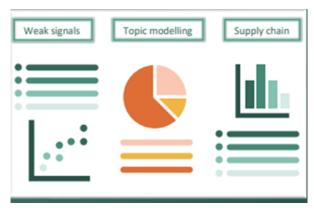
Il progetto mira a migliorare il quadro di **analisi integrata del rischio per la sicurezza alimentare** in Europa per supportare **l'individuazione precoce dei rischi alimentari** nella filiera alimentare, in particolare per:

- affrontare le sfide future derivanti dalle politiche del Green Deal (es cambiamenti climatici)
- sostenere la realizzazione di una produzione alimentare sicura e sostenibile.
- contribuire agli Obiettivi di Sviluppo Sostenibile delle Nazioni Unite (OSS 2, 8, 9, 12, 15)

Nello specifico, il progetto mira a sviluppare:

- **sistemi di allerta precoce (early warning) e di previsione dei rischi emergenti** per identificare e monitorare i rischi per la sicurezza alimentare esistenti ed emergenti nella filiera alimentare.
- metodi di rilevamento mirati e non mirati per i pericoli esistenti ed emergenti.
- metodi e strumenti di valutazione olistica del rischio a supporto della regolamentazione in un contesto globale in continua evoluzione.
- miglioramento delle infrastrutture di condivisione di dati e conoscenze attraverso lo sviluppo di un'infrastruttura europea integrata per lo scambio di dati e conoscenze in grado di alimentare un ecosistema di sistemi di supporto alle decisioni.

Metodologia


HOLIFOOD applica un approccio sistemico, che tiene conto del contesto in cui vengono prodotti gli alimenti, compresi gli aspetti economici, ambientali e sociali. Nel progetto vengono utilizzate l'intelligenza artificiale (AI) e le tecnologie di Big Data per anticipare i fattori di cambiamento (drivers) causati da un ambiente globale in evoluzione e supportare i gestori del rischio nell'adozione di misure di mitigazione tempestive.

Il Work Package 1 del progetto riguarda i 'Sistemi di allerta precoce e di previsione dei rischi emergenti per pericoli noti e ignoti p di sicurezza alimentare'. Ma cosa sono i pericoli e cosa sono i rischi emergenti? I pericoli sono agenti, come una sostanza chimica, un microrganismo o un oggetto fisico, con il potenziale di

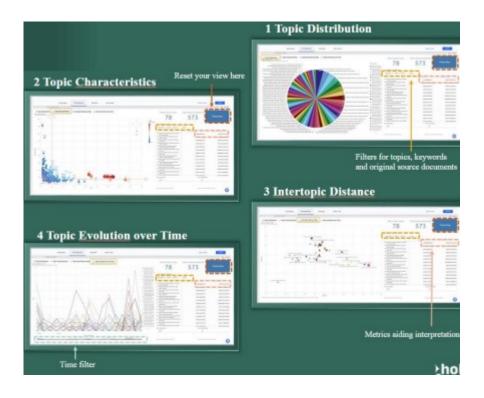
causare danni. È l'effettiva esposizione del consumatore a quel particolare pericolo che potrebbe davvero rappresentare un rischio, ad esempio quando vengono superati i limiti di sicurezza. Un **rischio emergente** è definito come un rischio derivante da un pericolo appena identificato a cui può verificarsi un'esposizione significativa (es. PFAS) o un'inaspettata nuova o aumentata esposizione significativa (es. un aumento delle micotossine dovuto alle variabilità climatiche che stimolano la crescita di muffe) e/o suscettibilità a un pericolo noto (es. anziani infetti da Listeria.

Il progetto include una *dashboard* interattiva che è stata testa in occasione di un workshop del 18 giugno 2025. E' composta da tre diversi strumenti o sistemi in grado di anticipare i fattori di cambiamento (drivers): Rilevatore di Segnali Deboli (*Weak Signal Miner*), Modellazione degli Argomenti (*Topic Modelling*), Catena di Approvvigionamento (Supply Chain).

Rilevatore di Segnali Deboli (Weak Signal Miner).

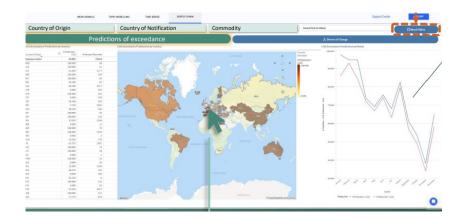
La tecnica di *text mining* (analisi del testo) distingue i segnali deboli emergenti da quelli ben noti (segnali forti) e quelli non in evoluzione (rumori o *noises*). I segnali deboli sono termini o argomenti con una bassa frequenza di occorrenza storica e attuale, ma con un tasso di aumento superiore alla media nel tempo o livello minimo di 'grado di visibilità'. Lo scopo principale dello strumento è quello di distillare grandi volumi di testo in un insieme conciso di fenomeni sottorappresentati, potenziali rischi emergenti. Per individuare i

segnali deboli, gli utenti impostano le soglie minime e massime di frequenza degli argomenti e un livello minimo di "grado di visibilità" ispezionando visivamente i dati nella matrice di emergenza degli argomenti. Una volta identificata una raccolta gestibile di segnali deboli, il *DataFrame* corrispondente può essere scaricato per ulteriori analisi e valutazione del rischio.

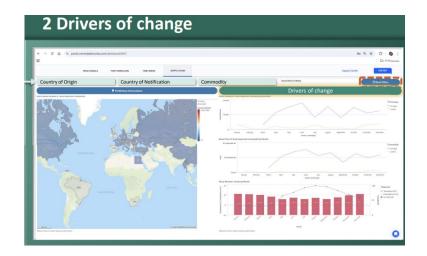


Modellazione degli Argomenti (Topic Modelling): è una tecnica utilizzata per scoprire argomenti o temi astratti all'interno di una raccolta di documenti allo scopo di identificare e categorizzare automaticamente argomenti o temi all'interno dei dati. Organizza i dati testuali (ad esempio documenti, articoli di giornale) in argomenti con l'ausilio di metodologie di text mining. L'evoluzione degli argomenti nel tempo (emergere o scomparire) è importante per i segnali di rischio per la sicurezza alimentare. La fonte dei dati è rappresentata da articoli relativi alla sicurezza alimentare raccolti da fonti mediatiche.

<u>Topic Characteristics</u> (Caratteristiche degli Argomenti): mostra una rappresentazione basata su parole chiave, che consente agli utenti di interpretare gli argomenti in base a metriche e caratteristiche delle parole chiave.


<u>Intertopic Distance</u> (Distanza Inter-Argomento): aiuta a comprendere come i diversi argomenti sono correlati tra loro. La dimensione dei cluster è proporzionale al numero di articoli al suo interno, e la distanza mostra la somiglianza semantica.

<u>Topics over Time</u> (Argomenti nel Tempo): mostra come i diversi argomenti cambiano nel tempo. La loro evoluzione è fondamentale per segnalare l'emergere o la scomparsa di un argomento che potrebbe indicare rischi per la sicurezza alimentare.



Catena di Approvvigionamento (Supply Chain): utilizza la classificazione basata su machine learning (apprendimento automatico) per prevedere se i pericoli per la sicurezza alimentare superano o meno determinati limiti di sicurezza alimentare in specifiche filiere. La classificazione basata sull'apprendimento automatico utilizza algoritmi o modelli che cercano di individuare automaticamente schemi nei dati, riducendo al minimo l'errore tra le previsioni e il valore reale. Ciò consente di prevedere la probabilità di superamento del limite massimo di residuo. Vengono valutate tre catene di approvvigionamento: pollame, legumi (lenticchie) e cereali (mais). I fattori sati sono i dati di monitoraggio della sicurezza alimentare e fattori di cambiamento (come clima ed economia). Lo strumento è composto da due schede. In tutte le schede è possibile filtrare per paese di origine, paese di notifica o merce.

<u>Le previsioni di superamento</u> (*Predictions of exceedance*): mostrano la probabilità calcolata che un paese superi il limite massimo di residui per tutte le combinazioni di prodotto e contaminante (risultati per paese a sinistra, visualizzazione su mappa al centro). Inoltre, le previsioni mensili vengono confrontate con le misurazioni effettive a destra.

<u>I fattori di cambiamento</u> (*Drivers of change*): utilizzati per le previsioni di superamento. In questa scheda è possibile visualizzare le importazioni e le esportazioni per paese, il prezzo medio di una merce e le tendenze meteorologiche medie mensili.

Dicembre 2025